Home Latest Jobs Syllabus Projects Previous Question Papers Entrance Exam Notifications Multiple Choice Question

AP ECET MATHEMATICS Multiple Choice Questions (MCQs)

AP ECET Mathematics MCQs

AP ECET Mathematics MCQs (136 to 150)

136. Bernoulli’s equation is of the form:

a) \( \frac{dy}{dx} + P(x)y = Q(x) \)

b) \( \frac{dy}{dx} + P(x)y^n = Q(x) \)

c) \( \frac{dy}{dx} = P(x)y + Q(x) \)

d) \( \frac{dy}{dx} = P(x)y^2 + Q(x) \)

Answer: b) \( \frac{dy}{dx} + P(x)y^n = Q(x) \)

137. The solution of the linear differential equation \( \frac{dy}{dx} + P(x)y = Q(x) \) is:

a) \( y = e^{\int P(x)dx} \)

b) \( y = e^{\int Q(x)dx} \)

c) \( y = e^{\int P(x)dx} \cdot Q(x) \)

d) \( y = e^{\int Q(x)dx} + C \)

Answer: a) \( y = e^{\int P(x)dx} \)

138. Which of the following is the general form of a nth-order linear differential equation with constant coefficients?

a) \( a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0 \)

b) \( a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} = 0 \)

c) \( a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{dy}{dx} + a_0 y = Q(x) \)

d) \( \frac{d^n y}{dx^n} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0 \)

Answer: a) \( a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0 \)

139. What is the general solution of the non-homogeneous linear differential equation \( \frac{d^2 y}{dx^2} + 3 \frac{dy}{dx} + 2y = e^x \)?

a) \( y = C_1 e^{-x} + C_2 e^{-2x} + A e^x \)

b) \( y = C_1 e^x + C_2 e^{2x} + A e^x \)

c) \( y = C_1 e^{-x} + C_2 e^{x} + A e^x \)

d) \( y = C_1 e^x + C_2 e^{-x} + A e^x \)

Answer: a) \( y = C_1 e^{-x} + C_2 e^{-2x} + A e^x \)

140. The particular integral for the equation \( \frac{d^2 y}{dx^2} + y = \sin(ax) \) is:

a) \( A \cos(ax) + B \sin(ax) \)

b) \( A \cos(ax) - B \sin(ax) \)

c) \( A \cos(ax) + B \sin(ax) + C \)

d) \( A \cos(ax) + B \sin(ax) + D \)

Answer: a) \( A \cos(ax) + B \sin(ax) \)

141. The solution to the differential equation \( \frac{dy}{dx} = y \cos(x) \) is:

a) \( y = A e^{\sin(x)} \)

b) \( y = A e^{\cos(x)} \)

c) \( y = A \cos(x) \)

d) \( y = A e^{x \cos(x)} \)

Answer: b) \( y = A e^{\cos(x)} \)

142. Which of the following is the particular solution for \( \frac{d^2 y}{dx^2} + 4y = \cos(2x) \)?

a) \( A \cos(2x) + B \sin(2x) \)

b) \( A \cos(2x) + B \sin(2x) + C \)

c) \( \frac{1}{2} \cos(2x) \)

d) \( \frac{1}{5} \cos(2x) \)

Answer: c) \( \frac{1}{2} \cos(2x) \)

143. The complementary function of the differential equation \( \frac{d^2 y}{dx^2} - 5 \frac{dy}{dx} + 6y = 0 \) is:

a) \( e^{3x} + e^{2x} \)

b) \( C_1 e^{3x} + C_2 e^{2x} \)

c) \( C_1 e^{-3x} + C_2 e^{-2x} \)

d) \( e^{5x} \)

Answer: b) \( C_1 e^{3x} + C_2 e^{2x} \)

144. The form of the particular integral for the function \( \cos(ax) \) in the equation \( \frac{d^2 y}{dx^2} + y = \cos(ax) \) is:

a) \( A \cos(ax) + B \sin(ax) \)

b) \( A \cos(ax) \)

c) \( A e^{ax} + B e^{-ax} \)

d) \( A \cos(ax) + B e^{ax} \)

Answer: a) \( A \cos(ax) + B \sin(ax) \)

145. For the equation \( \frac{d^2 y}{dx^2} + 3 \frac{dy}{dx} + 2y = \sin(ax) \), the particular solution is:

a) \( A \cos(x) + B \sin(x) \)

b) \( A e^x + B e^{-x} \)

c) \( A \cos(x) + B \sin(x) + C \)

d) \( A \cos(x) + B \sin(x) + D \)

Answer: a) \( A \cos(x) + B \sin(x) \)

146. The general solution for the equation \( \frac{d^2 y}{dx^2} + 3y = \sin(ax) \) is:

a) \( A \cos(ax) + B \sin(ax) + C \cos(x) \)

b) \( A \cos(ax) + B \sin(ax) + C \)

c) \( A e^x + B e^{-x} + C \cos(x) \)

d) \( A \cos(ax) + B \sin(ax) + D \)

Answer: b) \( A \cos(ax) + B \sin(ax) + C \)

147. For a differential equation with constant coefficients, the general solution is:

a) A combination of polynomial functions

b) A linear combination of exponential functions

c) A combination of trigonometric functions

d) A combination of logarithmic functions

Answer: b) A linear combination of exponential functions

148. The method used for solving a non-homogeneous linear differential equation is:

a) Substitution method

b) Variation of parameters

c) Integration factor

d) Laplace transform

Answer: b) Variation of parameters

149. The characteristic equation for the second-order homogeneous differential equation \( \frac{d^2 y}{dx^2} + p \frac{dy}{dx} + qy = 0 \) is:

a) \( r^2 + pr + q = 0 \)

b) \( r^2 + q = 0 \)

c) \( r^2 + p = 0 \)

d) \( r^2 - p = 0 \)

Answer: a) \( r^2 + pr + q = 0 \)

150. Which of the following is the solution for the differential equation \( \frac{d^2 y}{dx^2} + 4y = 0 \)?

a) \( C_1 \cos(2x) + C_2 \sin(2x) \)

b) \( C_1 e^{2x} + C_2 e^{-2x} \)

c) \( C_1 e^x + C_2 e^{-x} \)

d) \( C_1 \cos(x) + C_2 \sin(x) \)

Answer: a) \( C_1 \cos(2x) + C_2 \sin(2x) \)


    << Previous Page    l   

Note/Caution: studentsbizz.com does not promise a job or an interview in exchange for money. Fraudsters may ask you to pay under the pretext of a registration fee or refundable fee, but please be aware that legitimate employers will not require such payments.