136. Bernoulli’s equation is of the form:
a) \( \frac{dy}{dx} + P(x)y = Q(x) \)
b) \( \frac{dy}{dx} + P(x)y^n = Q(x) \)
c) \( \frac{dy}{dx} = P(x)y + Q(x) \)
d) \( \frac{dy}{dx} = P(x)y^2 + Q(x) \)
137. The solution of the linear differential equation \( \frac{dy}{dx} + P(x)y = Q(x) \) is:
a) \( y = e^{\int P(x)dx} \)
b) \( y = e^{\int Q(x)dx} \)
c) \( y = e^{\int P(x)dx} \cdot Q(x) \)
d) \( y = e^{\int Q(x)dx} + C \)
138. Which of the following is the general form of a nth-order linear differential equation with constant coefficients?
a) \( a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0 \)
b) \( a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} = 0 \)
c) \( a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{dy}{dx} + a_0 y = Q(x) \)
d) \( \frac{d^n y}{dx^n} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0 \)
139. What is the general solution of the non-homogeneous linear differential equation \( \frac{d^2 y}{dx^2} + 3 \frac{dy}{dx} + 2y = e^x \)?
a) \( y = C_1 e^{-x} + C_2 e^{-2x} + A e^x \)
b) \( y = C_1 e^x + C_2 e^{2x} + A e^x \)
c) \( y = C_1 e^{-x} + C_2 e^{x} + A e^x \)
d) \( y = C_1 e^x + C_2 e^{-x} + A e^x \)
140. The particular integral for the equation \( \frac{d^2 y}{dx^2} + y = \sin(ax) \) is:
a) \( A \cos(ax) + B \sin(ax) \)
b) \( A \cos(ax) - B \sin(ax) \)
c) \( A \cos(ax) + B \sin(ax) + C \)
d) \( A \cos(ax) + B \sin(ax) + D \)
141. The solution to the differential equation \( \frac{dy}{dx} = y \cos(x) \) is:
a) \( y = A e^{\sin(x)} \)
b) \( y = A e^{\cos(x)} \)
c) \( y = A \cos(x) \)
d) \( y = A e^{x \cos(x)} \)
142. Which of the following is the particular solution for \( \frac{d^2 y}{dx^2} + 4y = \cos(2x) \)?
a) \( A \cos(2x) + B \sin(2x) \)
b) \( A \cos(2x) + B \sin(2x) + C \)
c) \( \frac{1}{2} \cos(2x) \)
d) \( \frac{1}{5} \cos(2x) \)
143. The complementary function of the differential equation \( \frac{d^2 y}{dx^2} - 5 \frac{dy}{dx} + 6y = 0 \) is:
a) \( e^{3x} + e^{2x} \)
b) \( C_1 e^{3x} + C_2 e^{2x} \)
c) \( C_1 e^{-3x} + C_2 e^{-2x} \)
d) \( e^{5x} \)
144. The form of the particular integral for the function \( \cos(ax) \) in the equation \( \frac{d^2 y}{dx^2} + y = \cos(ax) \) is:
a) \( A \cos(ax) + B \sin(ax) \)
b) \( A \cos(ax) \)
c) \( A e^{ax} + B e^{-ax} \)
d) \( A \cos(ax) + B e^{ax} \)
145. For the equation \( \frac{d^2 y}{dx^2} + 3 \frac{dy}{dx} + 2y = \sin(ax) \), the particular solution is:
a) \( A \cos(x) + B \sin(x) \)
b) \( A e^x + B e^{-x} \)
c) \( A \cos(x) + B \sin(x) + C \)
d) \( A \cos(x) + B \sin(x) + D \)
146. The general solution for the equation \( \frac{d^2 y}{dx^2} + 3y = \sin(ax) \) is:
a) \( A \cos(ax) + B \sin(ax) + C \cos(x) \)
b) \( A \cos(ax) + B \sin(ax) + C \)
c) \( A e^x + B e^{-x} + C \cos(x) \)
d) \( A \cos(ax) + B \sin(ax) + D \)
147. For a differential equation with constant coefficients, the general solution is:
a) A combination of polynomial functions
b) A linear combination of exponential functions
c) A combination of trigonometric functions
d) A combination of logarithmic functions
148. The method used for solving a non-homogeneous linear differential equation is:
a) Substitution method
b) Variation of parameters
c) Integration factor
d) Laplace transform
149. The characteristic equation for the second-order homogeneous differential equation \( \frac{d^2 y}{dx^2} + p \frac{dy}{dx} + qy = 0 \) is:
a) \( r^2 + pr + q = 0 \)
b) \( r^2 + q = 0 \)
c) \( r^2 + p = 0 \)
d) \( r^2 - p = 0 \)
150. Which of the following is the solution for the differential equation \( \frac{d^2 y}{dx^2} + 4y = 0 \)?
a) \( C_1 \cos(2x) + C_2 \sin(2x) \)
b) \( C_1 e^{2x} + C_2 e^{-2x} \)
c) \( C_1 e^x + C_2 e^{-x} \)
d) \( C_1 \cos(x) + C_2 \sin(x) \)
Note/Caution: studentsbizz.com does not promise a job or an interview in exchange for money. Fraudsters may ask you to pay under the pretext of a registration fee or refundable fee, but please be aware that legitimate employers will not require such payments.