JEE (Main) Mathematics - Three-Dimensional Geometry MCQs
JEE (Main) Mathematics - Three-Dimensional Geometry MCQs
-
Q46. The coordinates of a point in space are (3, 4, 5). The position vector of this point is:
- a) \(3i + 4j + 5k\)
- b) \(4i + 5j + 3k\)
- c) \(5i + 3j + 4k\)
- d) \(3i + 5j + 4k\)
Answer: a) \(3i + 4j + 5k\)
-
Q47. The distance between the points P(1, 1, 1) and Q(4, 5, 6) is:
- a) \( \sqrt{27} \)
- b) \( \sqrt{30} \)
- c) \( \sqrt{34} \)
- d) \( \sqrt{50} \)
Answer: c) \( \sqrt{34} \)
-
Q48. The coordinates of a point dividing the line segment joining A(1, 2, 3) and B(4, 5, 6) in the ratio 4:5 are:
- a) \( (3.4, 4.4, 5.4) \)
- b) \( (3.5, 4.5, 5.5) \)
- c) \( (3.8, 4.8, 5.8) \)
- d) \( (4.2, 5.2, 6.2) \)
Answer: a) \( (3.4, 4.4, 5.4) \)
-
Q49. The direction cosines of a line with direction ratios (1, 2, 3) are:
- a) \( \left( \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}} \right) \)
- b) \( \left( \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{3}{\sqrt{6}} \right) \)
- c) \( \left( \frac{1}{\sqrt{10}}, \frac{2}{\sqrt{10}}, \frac{3}{\sqrt{10}} \right) \)
- d) \( \left( \frac{1}{\sqrt{12}}, \frac{2}{\sqrt{12}}, \frac{3}{\sqrt{12}} \right) \)
Answer: a) \( \left( \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}} \right) \)
-
Q50. The angle between the lines with direction ratios (1, 1, 1) and (2, 2, 2) is:
- a) \( 0^\circ \)
- b) \( 45^\circ \)
- c) \( 60^\circ \)
- d) \( 90^\circ \)
Answer: a) \( 0^\circ \)
-
Q51. The equation of the line passing through the points (1, 2, 3) and (4, 5, 6) is:
- a) \( \frac{x - 1}{3} = \frac{y - 2}{3} = \frac{z - 3}{3} \)
- b) \( \frac{x - 1}{2} = \frac{y - 2}{2} = \frac{z - 3}{2} \)
- c) \( \frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z - 3}{3} \)
- d) \( \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \)
Answer: a) \( \frac{x - 1}{3} = \frac{y - 2}{3} = \frac{z - 3}{3} \)
-
Q52. The lines \( L_1: x = 1 + t, y = 2 + 2t, z = 3 + t \) and \( L_2: x = 3 + s, y = 4 + s, z = 5 + 2s \) are:
- a) Parallel
- b) Skew
- c) Coincident
- d) Intersecting
Answer: b) Skew
-
Q53. The shortest distance between two skew lines is:
- a) 1
- b) 2
- c) 3
- d) \( \sqrt{3} \)
Answer: b) 2
-
Q54. If the direction ratios of a line are \( (4, 3, 5) \), the direction cosines are:
- a) \( \left( \frac{4}{\sqrt{50}}, \frac{3}{\sqrt{50}}, \frac{5}{\sqrt{50}} \right) \)
- b) \( \left( \frac{4}{\sqrt{60}}, \frac{3}{\sqrt{60}}, \frac{5}{\sqrt{60}} \right) \)
- c) \( \left( \frac{4}{\sqrt{70}}, \frac{3}{\sqrt{70}}, \frac{5}{\sqrt{70}} \right) \)
- d) \( \left( \frac{4}{\sqrt{80}}, \frac{3}{\sqrt{80}}, \frac{5}{\sqrt{80}} \right) \)
Answer: a) \( \left( \frac{4}{\sqrt{50}}, \frac{3}{\sqrt{50}}, \frac{5}{\sqrt{50}} \right) \)
-
Q55. The angle between the lines with direction ratios (2, 3, 1) and (1, 2, 3) is:
- a) \( 45^\circ \)
- b) \( 60^\circ \)
- c) \( 90^\circ \)
- d) \( 120^\circ \)
Answer: b) \( 60^\circ \)
-
Q56. The equation of a line in vector form passing through the point (1, 2, 3) with direction ratios (2, 3, 1) is:
- a) \( \mathbf{r} = (1, 2, 3) + t(2, 3, 1) \)
- b) \( \mathbf{r} = (1, 2, 3) + t(1, 2, 3) \)
- c) \( \mathbf{r} = (2, 3, 4) + t(2, 3, 1) \)
- d) \( \mathbf{r} = (1, 2, 3) + t(1, 1, 1) \)
Answer: a) \( \mathbf{r} = (1, 2, 3) + t(2, 3, 1) \)
-
Q57. The direction ratios of the line joining the points (2, 3, 4) and (5, 6, 7) are:
- a) (3, 3, 3)
- b) (4, 4, 4)
- c) (1, 1, 1)
- d) (2, 2, 2)
Answer: a) (3, 3, 3)
-
Q58. The angle between two lines \( L_1: x = 1 + t, y = 2 + 2t, z = 3 + t \) and \( L_2: x = 3 + s, y = 4 + s, z = 5 + 2s \) is:
- a) \( 60^\circ \)
- b) \( 90^\circ \)
- c) \( 45^\circ \)
- d) \( 120^\circ \)
Answer: a) \( 60^\circ \)
-
Q59. The shortest distance between the lines \( L_1: x = 1 + t, y = 2 + 2t, z = 3 + t \) and \( L_2: x = 3 + s, y = 4 + s, z = 5 + 2s \) is:
- a) 1
- b) 2
- c) 3
- d) \( \sqrt{5} \)
Answer: b) 2
-
Q60. The direction ratios of a line passing through the points (1, 2, 3) and (4, 5, 6) are:
- a) (3, 3, 3)
- b) (2, 2, 2)
- c) (1, 1, 1)
- d) (4, 4, 4)
Answer: a) (3, 3, 3)
<< Previous Page
l
Next Page >>
Note/Caution: studentsbizz.com does not promise a job or an interview in exchange for money. Fraudsters may ask you to pay under the pretext of a registration fee or refundable fee, but please be aware that legitimate employers will not require such payments.