Home Latest Jobs Syllabus Projects Previous Question Papers Entrance Exam Notifications Multiple Choice Question
JEE (Main) Mathematics - Integration MCQs

JEE (Main) Mathematics - Integration MCQs (16-30)

  1. 16. The integral \( \int \frac{1}{x \ln(x)} \, dx \) can be evaluated using:

    • a) Substitution
    • b) Integration by parts
    • c) Partial fractions
    • d) Trigonometric identities

    Answer: a) Substitution

  2. 17. The integral \( \int \frac{x^2}{x^3 + 1} \, dx \) can be solved using:

    • a) Substitution
    • b) Integration by parts
    • c) Partial fractions
    • d) Trigonometric identities

    Answer: a) Substitution

  3. 18. Which substitution is used to solve \( \int \frac{1}{\sqrt{1-x^2}} \, dx \)?

    • a) \( x = \sin(\theta) \)
    • b) \( x = \tan(\theta) \)
    • c) \( x = \cos(\theta) \)
    • d) \( x = \sec(\theta) \)

    Answer: a) \( x = \sin(\theta) \)

  4. 19. The integral \( \int \ln(x) \, dx \) is best solved using:

    • a) Substitution
    • b) Integration by parts
    • c) Partial fractions
    • d) Trigonometric identities

    Answer: b) Integration by parts

  5. 20. The integral \( \int \frac{dx}{x^2 + 1} \) is evaluated as:

    • a) \( \tan^{-1}(x) + C \)
    • b) \( \ln(x) + C \)
    • c) \( \frac{1}{x} + C \)
    • d) \( \sin^{-1}(x) + C \)

    Answer: a) \( \tan^{-1}(x) + C \)

  6. 21. Which method is used to solve \( \int \frac{1}{x(x-1)} \, dx \)?

    • a) Substitution
    • b) Integration by parts
    • c) Partial fractions
    • d) Trigonometric identities

    Answer: c) Partial fractions

  7. 22. To evaluate \( \int x e^{x^2} \, dx \), which substitution is used?

    • a) \( u = x^2 \)
    • b) \( u = e^x \)
    • c) \( u = x \)
    • d) \( u = \ln(x) \)

    Answer: a) \( u = x^2 \)

  8. 23. The integral \( \int \sin^2(x) \, dx \) can be simplified using which identity?

    • a) \( \sin^2(x) = \frac{1 - \cos(2x)}{2} \)
    • b) \( \sin^2(x) = \frac{1 + \cos(2x)}{2} \)
    • c) \( \sin^2(x) = 1 - \cos^2(x) \)
    • d) \( \sin^2(x) = \cos^2(x) \)

    Answer: a) \( \sin^2(x) = \frac{1 - \cos(2x)}{2} \)

  9. 24. The integral \( \int \frac{dx}{x^2 + a^2} \) is solved using:

    • a) Integration by parts
    • b) Substitution
    • c) Partial fractions
    • d) Standard formula

    Answer: d) Standard formula

  10. 25. The integral \( \int \frac{1}{(x+1)(x+2)} \, dx \) is best solved by:

    • a) Substitution
    • b) Integration by parts
    • c) Partial fractions
    • d) Trigonometric identities

    Answer: c) Partial fractions

  11. 26. The integral \( \int e^{x} \sin(x) \, dx \) can be solved using:

    • a) Substitution
    • b) Integration by parts
    • c) Partial fractions
    • d) Trigonometric identities

    Answer: b) Integration by parts

  12. 27. The integral \( \int \frac{1}{\sqrt{x^2 + 2x + 5}} \, dx \) is best solved by:

    • a) Completing the square
    • b) Integration by parts
    • c) Substitution
    • d) Trigonometric identities

    Answer: a) Completing the square

  13. 28. To evaluate \( \int \frac{dx}{x^2 + a^2} \), we use:

    • a) Substitution
    • b) Integration by parts
    • c) Partial fractions
    • d) Standard result

    Answer: d) Standard result

  14. 29. The integral \( \int \sin(x) \cos(x) \, dx \) can be solved by using which identity?

    • a) \( \sin(x) \cos(x) = \frac{\sin(2x)}{2} \)
    • b) \( \sin(x) \cos(x) = \frac{1 - \cos(2x)}{2} \)
    • c) \( \sin(x) \cos(x) = \frac{1 + \cos(2x)}{2} \)
    • d) None of the above

    Answer: a) \( \sin(x) \cos(x) = \frac{\sin(2x)}{2} \)

  15. 30. The integral \( \int \frac{1}{x(x+1)} \, dx \) is best solved using:

    • a) Substitution
    • b) Integration by parts
    • c) Partial fractions
    • d) Trigonometric identities

    Answer: c) Partial fractions



    << Previous Page    l    Next Page >>

Note/Caution: studentsbizz.com does not promise a job or an interview in exchange for money. Fraudsters may ask you to pay under the pretext of a registration fee or refundable fee, but please be aware that legitimate employers will not require such payments.