Home Latest Jobs Syllabus Projects Previous Question Papers Entrance Exam Notifications Multiple Choice Question

TG EAMCET (EAPCET) Mathematic Multiple Choice Questions (MCQs)

TG EAMCET Mathematics MCQs

TG EAMCET Mathematics MCQs

211. The standard equation of a hyperbola is

a) \( x^2 + y^2 = 1 \)

b) \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)

c) \( \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \)

d) \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)

Answer: b) \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)

212. The parametric equations of a hyperbola are

a) \( x = a \sec \theta, y = b \tan \theta \)

b) \( x = a \tan \theta, y = b \sec \theta \)

c) \( x = a \cos \theta, y = b \sin \theta \)

d) \( x = a \sin \theta, y = b \cos \theta \)

Answer: a) \( x = a \sec \theta, y = b \tan \theta \)

213. The equation of the tangent to the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) at the point \( (x_1, y_1) \) is

a) \( \frac{x_1 x}{a^2} - \frac{y_1 y}{b^2} = 1 \)

b) \( \frac{x_1 x}{a^2} + \frac{y_1 y}{b^2} = 1 \)

c) \( \frac{x_1 x}{b^2} - \frac{y_1 y}{a^2} = 1 \)

d) \( \frac{x_1 x}{a^2} - \frac{y_1 y}{b^2} = 0 \)

Answer: b) \( \frac{x_1 x}{a^2} + \frac{y_1 y}{b^2} = 1 \)

214. The asymptotes of the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) are

a) \( y = \pm \frac{b}{a} x \)

b) \( y = \pm \frac{a}{b} x \)

c) \( y = \pm x \)

d) \( y = \pm b x \)

Answer: a) \( y = \pm \frac{b}{a} x \)

215. The centroid of a triangle with vertices \( A(x_1, y_1, z_1) \), \( B(x_2, y_2, z_2) \), and \( C(x_3, y_3, z_3) \) is

a) \( \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3} \right) \)

b) \( \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2} \right) \)

c) \( \left( \frac{x_1 + x_2 + x_3}{2}, \frac{y_1 + y_2 + y_3}{2}, \frac{z_1 + z_2 + z_3}{2} \right) \)

d) \( \left( \frac{x_1 + x_2 + x_3}{4}, \frac{y_1 + y_2 + y_3}{4}, \frac{z_1 + z_2 + z_3}{4} \right) \)

Answer: a) \( \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3} \right) \)

216. The section formula divides a line joining two points \( A(x_1, y_1, z_1) \) and \( B(x_2, y_2, z_2) \) in the ratio \( m:n \). The coordinates of the point dividing the line are given by

a) \( \left( \frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}, \frac{mz_2 + nz_1}{m + n} \right) \)

b) \( \left( \frac{mx_1 + nx_2}{m + n}, \frac{my_1 + ny_2}{m + n}, \frac{mz_1 + nz_2}{m + n} \right) \)

c) \( \left( \frac{m + n}{mx_2 + nx_1}, \frac{m + n}{my_2 + ny_1}, \frac{m + n}{mz_2 + nz_1} \right) \)

d) \( \left( \frac{mx_2 - nx_1}{m + n}, \frac{my_2 - ny_1}{m + n}, \frac{mz_2 - nz_1}{m + n} \right) \)

Answer: b) \( \left( \frac{mx_1 + nx_2}{m + n}, \frac{my_1 + ny_2}{m + n}, \frac{mz_1 + nz_2}{m + n} \right) \)

217. If \( l, m, n \) are the direction cosines of a line, then

a) \( l^2 + m^2 + n^2 = 1 \)

b) \( l^2 + m^2 + n^2 = 0 \)

c) \( l + m + n = 0 \)

d) \( l^2 - m^2 + n^2 = 1 \)

Answer: a) \( l^2 + m^2 + n^2 = 1 \)

218. The direction ratios of a line are \( \langle 2, -3, 4 \rangle \). The direction cosines of the line are

a) \( \langle \frac{2}{5}, \frac{-3}{5}, \frac{4}{5} \rangle \)

b) \( \langle \frac{2}{3}, \frac{-3}{4}, \frac{4}{5} \rangle \)

c) \( \langle \frac{2}{4}, \frac{-3}{4}, \frac{4}{4} \rangle \)

d) \( \langle \frac{2}{6}, \frac{-3}{6}, \frac{4}{6} \rangle \)

Answer: a) \( \langle \frac{2}{5}, \frac{-3}{5}, \frac{4}{5} \rangle \)

219. The Cartesian equation of the plane passing through the point \( (x_1, y_1, z_1) \) with normal vector \( \langle a, b, c \rangle \) is

a) \( a(x - x_1) + b(y - y_1) + c(z - z_1) = 0 \)

b) \( a(x + x_1) + b(y + y_1) + c(z + z_1) = 0 \)

c) \( a(x - x_1) - b(y - y_1) - c(z - z_1) = 0 \)

d) \( a(x + x_1) - b(y + y_1) - c(z + z_1) = 0 \)

Answer: a) \( a(x - x_1) + b(y - y_1) + c(z - z_1) = 0 \)

220. The equation of the plane \( 2x - 3y + 4z = 5 \) represents a plane with normal vector

a) \( \langle 2, -3, 4 \rangle \)

b) \( \langle 1, -1, 1 \rangle \)

c) \( \langle 3, -2, 5 \rangle \)

d) \( \langle 5, 4, -3 \rangle \)

Answer: a) \( \langle 2, -3, 4 \rangle \)



    << Previous Page    l    Next Page >>

Note/Caution: studentsbizz.com does not promise a job or an interview in exchange for money. Fraudsters may ask you to pay under the pretext of a registration fee or refundable fee, but please be aware that legitimate employers will not require such payments.